PAIN MANAGEMENT in the CANINE PATIENT

Laurie Edge-Hughes, BScPT, MAnimSt (Animal Physio), CAFCI, CCRT

Part 1: Basics of Nociception

Laurie Edge-Hughes, BScPT, MAnimSt (Animal Physio), CAFCI, CCRT

- ♦ Pain is the most common reason a PERSON seeks medical attention.
- ♦ IASP Definition of Pain:
 - * 'Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage'

Basics of Nociception

- ♦ Categories of Pain
 - ♦ ACUTE PAIN
 - ♦ Protective
 - ♦ Warning System of ACTUAL or POTENTIAL tissue damage
 - ♦ Symptom of tissue damage
 - **♦ CHRONIC PAIN**
 - ♦ When the pain outlasts normal healing times
 - If pain is greater than expected in regards to the extend of damage
 - Occurs in the absence of identifiable tissue damage or objective findings
 - * Can be considered a 'disease' in and of itself

- ♦ When is Pain good?
 - ♦ Protection from danger
 - ♦ Protects the body until healing has occurred
 - ♦ Muscle spasms
 - ♦ Muscle tension
 - ♦ Muscle weakness
 - ♦ Message to the brain to "do something"

Basics of Nociception

- ♦ The SENSORS...
 - Millions throughout the body surveying their area for activity
 - ♦ MECHANICAL FORCES
 - ♦ TEMPERATURE CHANGES
 - **♦ CHEMICAL CHANGES**
 - ♦ 'Bonus' sensors
 - ♦ EYES responding to light
 - ♦ EARS responding to sound
 - ♦ NOSE responding to chemicals
 - * Signals (electrical impulses) are sent to the spinal cord & then to the brain

- ♦ A Note about SENSORS
 - ♦ Sensors have a short 'shelf-life'
 - ♦ i.e. there is a continual turn over
 - ♦ Therefore your sensitivity is continually changing
 - → = Good News for chronic pain sufferers... your sensitivity level is NOT fixed!

- ♦ Sensors send a 'DANGER' message up the nerves
 - ♦ Via C-fibers & A-delta nerves
- → It's up to the SPINAL CORD & BRAIN to interpret the danger message(s)
- * The 'danger' messages are 'sorted' at the spinal cord and sent up to the brain via the spinothalamic tract.
- ♦ The brain 'processes' & interprets the messages

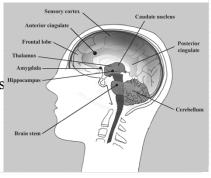

♦ Cheat sheet for Nerve fibre types

Table 2.1 Afferents of the Peripheral Nervous System (adapted from Hoeger Bement & Sluka 2007)

Afferent Nerves	Skin	Muscle		Joint
Thickly Myelinated	Aβ = touch	Ia = muscle	e e	III = proprioception
		spindles) jt	
		lb = GTO	l de	
		II = muscle	j " j	
		spindles	AII = proprioceptive	
			4 1	
Thinly myelinated	$A\delta$ = nociceptors	III = nociceptor		III = nociceptor
Unmyelinated	C = nociceptor	IV = nociceptor		IV = nociceptor
	•			•

Basics of Nociception

- ♦ Brain involvement in danger signal / pain processing:
 - ♦ Premotor / Motor Cortex
 - ♦ Cingulate Cortex
 - ♦ Prefrontal Cortex
 - ♦ Amygdala
 - ♦ Sensory Cortex
 - ♦ Hypothalamus / Thalamus
 - ♦ Cerebellum
 - ♦ Hippocampus
 - ♦ Spinal Cord

- ❖ If the brain decides that the 'danger messages' are real or they reach a critical number...
- \Rightarrow = PAIN!
- * Activate all systems activated!!!!!!! Go! Get you out of danger!

- ♦ Nociceptive Pain (early warning signal)
 - → It keeps you safe. It prevents further damage.
- ♦ Inflammatory Pain (adaptive)
 - ♦ Prevents further movement or contact with the injured area to allow for healing.
- ♦ Good job body! Pain here is 'useful'.

- ♦ BUT WAIT!!!!!!!!
- ♦ You can also get:
 - ♦ MALADAPTIVE Inflammatory Pain
 - ♦ Reverse signaling
 - ♦ NEUROPATHIC pain
 - ♦ PNS or CNS pain
 - ♦ CHRONIC MALADAPIVE pain
 - ♦ Abnormal responsiveness / Abnormal function

Basics of Nociception

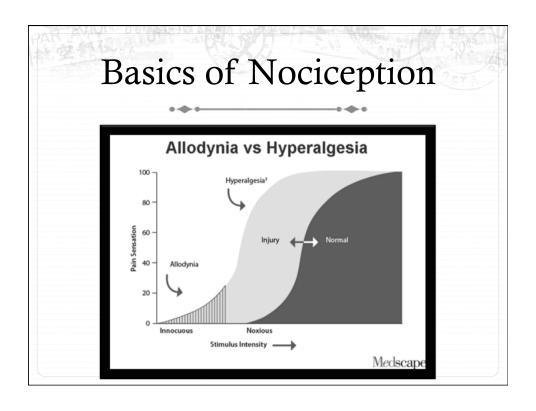
The role of the DORSAL ROOT GANGLION (DRG)

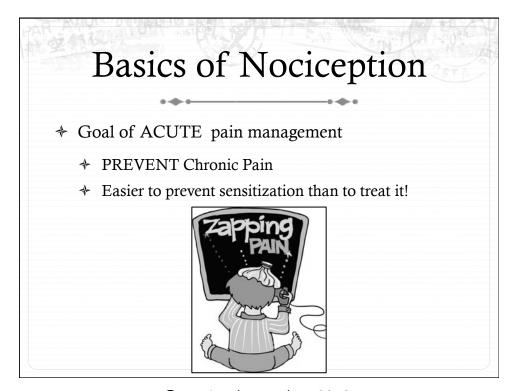
- ♦ Inflammation can activate / irritate nerves
- * Nerve injury / irritation can cause neurones to sprout in the DRGs & can lead to 'short circuiting'
- ♦ The DRG is also vulnerable to adrenaline & other chemicals in your blood stream = INCREASED sensitivity
- ♦ When 'set off' sometimes they don't stop signaling!

- ♦ Injured neurones will often backfire
- ♦ This causes 'wrong way' transmission of the impulse
- Backwards travel down a neurone = release of chemicals at the end
- * So.... Injured neurones can cause inflammation in the peripheral tissues.
 - ♦ (i.e. A back injury can cause foot swelling)
 - ♦ = boggy, soggy tissues!

Basics of Nociception

- ♦ Persistence of pain...
 - ♦ Neurone sensitization
 - Neurones become more excitable, more prolific,+ there is a release of excitatory chemical at dorsal horn of the SpC
 - → = Increased response system
- ♦ Windup Pain / Central Sensitization
 - * (The peripheral 'danger sensors' are no longer the issue/ problem!)

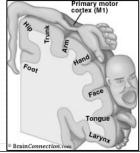

- ♦ Peripheral Sensitization:
 - Increased responsiveness and reduced threshold of nociceptors to stimulation of their receptive fields
- **♦** Central Sensitization:
 - Increased responsiveness to nociceptive neurons in the central nervous system to their normal or sub-threshold afferent input



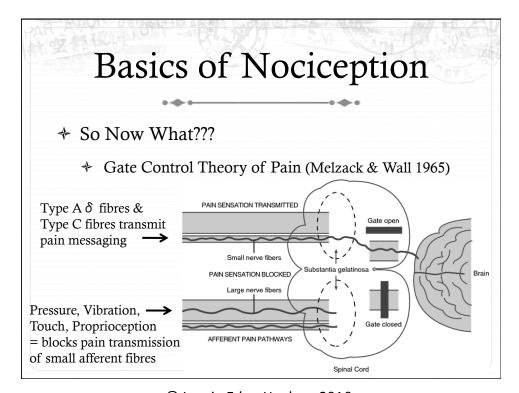
Basics of Nociception

CHRONIC PAIN

- * Once pain is experienced, relatively innocuous stimulation activates the system and triggers pain perception:
 - Hyperalgesia = an exaggerated or increased response to noxious stimuli
 - Allodynia = pain is produced by a stimulus not normal painful



© Laurie Edge-Hughes, 2016


- ♦ Complexities of Chronic Pain Management
 - 1. Increased reactivity = Decreased margin of error for kinematics & movement
 - 2. Non-nociceptive receptors can signal for pain even in the presence of normal (non-painful) stimuli.
 - Fine line between being active / promoting control, strength, endurance & FLARING the system

- ♦ Complexities of Chronic Pain Management
 - 3. The Spinal Cord & Brain begin to over-interpret PERCEIVED threats & vulnerabilities
 - 4. CNS reorganization = inaccurate transmission of proprioceptive inputs
 - * THIS disrupts the brain's spatial representation of the body
 - * WHICH compromises motor control and movement strategies

- ♦ So Now What???
 - **+** CONTROL:
 - ♦ Pain Perception (the brain)
 - ♦ Pain Projection (the spinal cord messaging)
 - ♦ Pain modulation (spinal cord processing)
 - ♦ Pain transmission (peripheral nerves)
 - → Pain transduction (pain receptor activation)

© Laurie Edge-Hughes, 2016

Basics of Nociception * So Now What??? * Many more options IT TAKES A TEAM TO MANAGE PAIN